На малых судах для создания тяги наибольшее распространение получил гребной винт — легкий, компактный, высокоэффективный, простой в изготовлении и удобный в эксплуатации движитель. Поговорим о нем поподробнее, разберемся в принципе работы и устройстве гребного винта.
Гребной винт (рис. 1) состоит из втулки — ступицы и нескольких лопастей, отлитых заодно с нею или изготовленных отдельно и закрепленных на ней. Винт обычно располагается в корме судна и приводится во вращение двигателем через гребной вал. Своим названием он обязан тому, что при работе любая точка его лопасти движется по винтовой линии — вращается и одновременно перемещается вперед вместе с судном. В основу теории, объясняющей работу гребного винта, положен принцип гидродинамического крыла. На первый взгляд это кажется странным — причем здесь крыло?, — но не торопитесь с выводом.
Посмотрим на лопасть винта сбоку (рис. 2) и представим направление, в котором она движется в воде (или, применив принцип обратимости движения, направление потока, обтекающего лопасть).
Скорость W потока воды относительно лопасти можно получить геометрическим сложением двух векторов: вызываемой вращением винта окружной скорости Vr=2πrn (π=3,14; r — отстояние рассматриваемого сечения лопасти от оси винта; n — число оборотов винта в секунду) и поступательной скорости движения1 вместе с судном Vа. Вектор суммарной скорости W направлен к нижней поверхности лопасти под углом α, называемым в теории крыла углом атаки. При этом на нижней поверхности лопасти (ее называют нагнетающей) создается повышенное давление воды, а на верхней (засасывающей) — разрежение. В результате разности давлений на лопасти, как на крыле, возникает подъемная сила Y. Если разложить ее на составляющие, одна из которых направлена в сторону движения судна, а вторая перпендикулярна ему, то получим соответственно силу Р , создающую упор гребного винта, и силу T, создающую крутящий момент, который и приходится преодолевать двигателю для того, чтобы винт вращался и двигал судно.
Упор гребного винта, создаваемый подъемной силой, зависит не столько от площади лопасти, сколько — в полной аналогии с крылом — от таких ее параметров, как угол атаки, профиль сечения, длина лопасти.
Познакомимся же с этими и другими основными характеристиками гребного винта.
Диаметр винта D определяется по окружности, описываемой наиболее удаленной от оси винта точкой лопасти.
Геометрический шаг гребного винта H — это шаг винтовой поверхности, с которой совпадает нагнетающая сторона лопасти. Если бы винт ввинчивался в воду, как в гайку, то за один его оборот судно прошло бы расстояние, равное шагу винта, а его скорость была бы равна Hn.
Почему лопасть должна иметь винтовую поверхность? Посмотрим на рис. 2. Очевидно, винт даст наибольший упор, если сечения лопасти на любом радиусе r будут расположены под одним и тем же оптимальным углом атаки к набегающему потоку α. Однако вблизи ступицы окружная скорость Vr=2πrn будет меньше, чем у конца лопасти, в то время как осевая скорость винта Hn везде одинакова. В результате изменится величина и направление скорости W. Чтобы сохранить угол α неизменным, лопасть у ступицы следует развернуть под большим углом к Vr, чем у конца. Это хорошо видно также и из другого рисунка (рис. 3), где показан способ образования и проверки винтовой поверхности лопасти с помощью шаговых угольников.
Диаметр и шаг винта являются важнейшими параметрами, от которых зависит возможность наиболее полного использования мощности двигателя, и, следовательно, достижения наибольшей скорости хода судна.
Если шаг винта слишком велик для данных скорости и числа оборотов, лопасти будут захватывать и отбрасывать назад слишком большое количество воды, упор винта возрастет, но зато одновременно увеличится крутящий момент на гребном валу и двигателю не хватит мощности, чтобы развить полные обороты. В этом случае говорят, что винт тяжелый.
Наоборот, если шаг мал, двигатель легко будет вращать винт на полном числе оборотов, но упор будет невелик, и судно не достигнет максимально возможной скорости. Такой винт считается легким.
Шаг и диаметр рассчитывают с учетом сопротивления воды движению корпуса, заданной скорости хода судна, числа оборотов и мощности устанавливаемого двигателя. Общее правило таково: для легких быстроходных лодок требуются винты с большим шагом или шаговым отношением H/D, для тяжелых и тихоходных — с меньшим. При обычно применяющихся двигателях с числом оборотов 1500—5000 об/мин оптимальное шаговое отношение H/D будет составлять: на гоночных мотолодках и глиссерах 0,9—1,4; легких прогулочных катерах 0,8—1,2; водоизмещающих катерах 0,6—1,0 и очень тяжелых тихоходных катерах 0,55—0,80. Важно иметь в виду, что эти значения справедливы, если гребной вал делает примерно 1000 об мин на каждые 15 км/час скорости лодки. В противных случаях необходимо применять редуктор, соответственно изменяющий число оборотов гребного винта.
Диаметр винта существенно влияет на загрузку двигателя. Например, при увеличении D всего на 5% приходится повышать мощность двигателя почти на 30%, чтобы получить то же число n оборотов винта. Это следует учитывать, если требуется «облегчить» тяжелый винт: иногда бывает достаточно немного подрезать концы лопастей до меньшего диаметра.
За один оборот винт вместе с судном продвигается вперед (рис. 4) не на величину шага Н, а из-за скольжения в воде — на меньшее расстояние, называемое поступью hp. Потеря скорости при этом составит Hn=hpn. Величина скольжения характеризуется отношением:
Скольжение s выражается обычно в процентах.
Поступь и скольжение гребного винта легко определить, зная скорость лодки, шаг винта и число его оборотов, так как:
Важно подчеркнуть, что скольжение является непременным условием работы гребного винта, поскольку именно благодаря скольжению поток воды натекает на лопасть под углом атаки и на ней создается подъемная сила — упор. Если бы скольжение было равно нулю, поступь равнялась бы шагу винта и упора практически не было бы2.
Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8—15%) имеют винты легких гоночных мотолодок и скутеров; у винтов глиссирующих катеров скольжение составляет 15—25%, у тяжелых водоизмещающих катеров 20—40%, а у парусных яхт, имеющих вспомогательный двигатель, 50—70%. Чрезмерное скольжение свидетельствует о том, что винт слишком тяжел или судно перегружено, так как с увеличением нагрузки (например, при буксировке мотолодкой воднолыжника) скольжение возрастает.
Для катерных винтов применяются сегментные, авиационные плоско-выпуклые и выпукло-вогнутые профили сечения лопастей. Последние два типа более эффективны, но сложнее в изготовлении и дают меньший упор при реверсировании, т. е. на заднем ходу.
Площадь лопастей, как уже отмечалось, не оказывает существенного влияния на упор винта. Однако чрезмерная площадь приводит к увеличению трения винта о воду и излишним затратам мощности двигателя.
На быстроходных катерах часто приходится сталкиваться с явлением кавитации гребного винта. Известно, что при пониженном давлении (например, высоко в горах) вода закипает при температуре ниже 100° С. У высокооборотных винтов разрежение на засасывающей стороне лопасти достигает такой большой величины, что вода вскипает уже при естественной температуре. Образуются пузырьки и полости, заполненные паром, — это явление и называется кавитацией. Различают две стадии кавитации (рис. 5). На первой стадии полости невелики и на работе винта они практически не сказываются. Однако когда пузырьки лопаются, создаются огромные местные давления, в результате чего материал лопасти выкрашивается у поверхности. Такие эрозионные разрушения при длительной работе кавитирующего винта могут быть весьма значительными.
При дальнейшем повышении скорости вращения винта наступает вторая стадия кавитации. Образуется сплошная полость (каверна), которая может замыкаться за пределами лопасти. Эрозия прекращается, но развиваемый винтом упор резко падает.
Момент наступления кавитации зависит не только от числа оборотов, но и от суммарной площади лопастей, толщины и кривизны профиля сечения лопасти, глубины погружения винта под ватерлинией и т. п. Чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньших числах оборотов, т. е. «раньше», наступает кавитация. Отметим, что развитию кавитации способствуют пузыри воздуха и завихрения от находящихся перед винтом кронштейнов, вала, фальшкиля, увеличенный шаг винта и т, п.
Характеристикой площади лопастей винта является его дисковое отношение A/Ad, т. е. отношение суммарной площади всех развернутых и спрямленных лопастей A к площади круга Ad, описываемого винтом (рис. 6). Для малогабаритных винтов тихоходных судов дисковое отношение обычно составляет 0,35—0,60, для кавитирующих винтов быстроходных катеров 0,80—1,20.
Наибольшее распространение на катерах получили трехлопастные гребные винты, хотя на гоночных судах часто применяют и двухлопастные. Вообще говоря, двухлопастные винты более эффективны. У трехлопастного винта расстояние между кромками соседних лопастей меньше, поэтому в обтекание лопастей вносится большее искажение. Кроме того, крутящий момент у трехлопастного винта несколько больше; соответственно и мощность, потребная для его вращения, выше. Четыре и пять лопастей применяются, главным образом, в тех случаях, когда нужно понизить вибрацию и шум от работы винтов.
В зависимости от направления вращения гребного вала (смотря с кормы) применяют винты правого (по часовой стрелке) и левого вращения.
Конечной оценкой эффективности выбранного гребного винта является его коэффициент полезного действия ηp — отношение полезной мощности, затрачиваемой непосредственно на создание упора Р и движение судна со скоростью υ (т. е. Po, 75 л. с.), к мощности двигателя, подводимой к винту.
Потери мощности на гребном винте довольно значительны и достигают 35—50%. Они вызваны затратами на ускорение потока воды за винтом, на закручивание и сужение этого потока, на трение лопастей о воду и др. Получить высокий к. п. д. винта на катерах очень трудно из-за небольшой осадки, ограничивающей диаметр винта, и сложности подбора оптимального числа оборотов.
Винт, расположенный в корме, всегда оказывается в зоне действия попутного потока, увлекаемого корпусом судна, поэтому скорость его встречи с водой меньше, чем скорость судна. У легких глиссирующих судов, на которых винт установлен под плоским днищем, это уменьшение невелико (2—5%), но на тяжелых водоизмещающих катерах, особенно если винт располагается за дейдвудом, оно возрастает до 15— 20%. Очевидно, что попутный поток необходимо учитывать, иначе винт окажется тяжелым.
Винт, засасывая воду как насос, увеличивает скорость обтекания водой кормовой оконечности судна. Вследствие этого здесь образуется зона пониженного давления, которая тормозит движение судна. Для преодоления этой силы засасывания винт должен развить дополнительный упор. Очевидно, чем полнее обводы и больше осадка судна в районе винта, чем больше диаметр винта и меньше скорость хода, тем больше сила засасывания. Например, на глиссирующем катере она составляет не более 4% основного упора, или тяги, необходимой для движения судна, а на спасательной шлюпке достигает 15—30%.
При работе гребного винта за корпусом судна полезная отдача мощности будет уже характеризоваться не к. п. д. винта, а так называемым пропульсивным коэффициентом:
где ηk — коэффициент влияния корпуса, учитывающий потери мощности из-за влияния попутного потока и засасывания3.
Средние значения пропульсивного коэффициента на современных катерах 0,45—0,55.
Заканчивая это первое знакомство с гребным винтом, советуем: исследуйте гребной винт вашей лодки, замерьте его диаметр и шаг, оцените скорость лодки, скольжение винта, число оборотов вала и загрузку двигателя. Вполне может оказаться, что вы найдете возможность сделать лодку более быстроходной.
О том, как подобрать оптимальный винт, мы расскажем в ближайших выпусках сборника.
Примечания
1. Как будет показано ниже, скорость натекающего потока на винт меньше скорости судна.
2. У лопастей с несимметричным профилем, обычно применяющимся Для винтов, упор становится равным нулю при отрицательных углах атаки, т. е. когда поступь несколько превышает геометрический шаг винта. Поступь, при которой упор винта равен нулю, называется гидродинамическим шагом винта или шагом нулевого упора.
3. В некоторых случаях ηk может быть больше единицы.